From 5a4e7d71000dfc4a27d6025af7d7008c25273389 Mon Sep 17 00:00:00 2001 From: Ivan Perez Avellaneda <80877217+iperezav@users.noreply.github.com> Date: Tue, 30 Dec 2025 23:16:07 -0500 Subject: [PATCH] Fix typo in numpy.gradient.html documentation DOC: Capitalized "single" in line 678 and add a point to the end of the sentence in line 693. Line 678:
  • Single scalar to specify a sample distance for all dimensions.

  • N scalars to specify a constant sample distance for each dimension. Line 693:

    axisNone or int or tuple of ints, optional

    Gradient is calculated only along the given axis or axes. --- 2.4/reference/generated/numpy.gradient.html | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/2.4/reference/generated/numpy.gradient.html b/2.4/reference/generated/numpy.gradient.html index 223d10c85..a5e1002c3 100644 --- a/2.4/reference/generated/numpy.gradient.html +++ b/2.4/reference/generated/numpy.gradient.html @@ -675,7 +675,7 @@

    numpy.gradientlist of scalar or array, optional

    Spacing between f values. Default unitary spacing for all dimensions. Spacing can be specified using:

      -
    1. single scalar to specify a sample distance for all dimensions.

    2. +
    3. Single scalar to specify a sample distance for all dimensions.

    4. N scalars to specify a constant sample distance for each dimension. i.e. dx, dy, dz, …

    5. N arrays to specify the coordinates of the values along each @@ -690,7 +690,7 @@

      numpy.gradient{1, 2}, optional

      Gradient is calculated using N-th order accurate differences at the boundaries. Default: 1.

      -
      axisNone or int or tuple of ints, optional

      Gradient is calculated only along the given axis or axes +

      axisNone or int or tuple of ints, optional

      Gradient is calculated only along the given axis or axes. The default (axis = None) is to calculate the gradient for all the axes of the input array. axis may be negative, in which case it counts from the last to the first axis.

      @@ -993,4 +993,4 @@

      numpy.gradient