-
Notifications
You must be signed in to change notification settings - Fork 35
added ML_diffusivity shape function #111
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Conversation
b213d2c to
7b8f824
Compare
src/shared/cvmix_kpp.F90
Outdated
|
|
||
| !BOP | ||
|
|
||
| ! !DESCRIPTION: | ||
| ! Use Entrainment Rule, BEdE_ER, To Find Entrainment Flux and Depth | ||
| ! for each assumed OBL_depth = cell centers, | ||
| ! until the boundary layer depth, ERdepth > 0 kER_depth are determined, OR | ||
| ! if there is no viable solution ERdepth = -1 , kER_depth=-1 | ||
|
|
||
| subroutine cvmix_kpp_compute_ER_depth( z_inter,Nsq,OBL_depth, & | ||
| uStar,Bsfc_ns,surfBuoy,StokesXI,BEdE_ER,ERdepth, & | ||
| CVMix_kpp_params_user) | ||
|
|
||
| ! !INPUT PARAMETERS: | ||
| real(cvmix_r8), dimension(:), intent(in) :: & | ||
| z_inter, & ! Interface heights <= 0 [m] | ||
| Nsq ! Column of Buoyancy Gradients at interfaces | ||
| real(cvmix_r8), dimension(:), intent(in) :: & | ||
| OBL_depth, & ! Array of assumed OBL depths >0 at cell centers [m] | ||
| surfBuoy, & ! surface Buoyancy flux surface to OBL_depth | ||
| StokesXI, & ! Stokes similarity parameter given OBL_depth | ||
| BEdE_ER ! Parameterized Entrainment Rule given OBL_depth | ||
| real(cvmix_r8), intent(in) :: uStar ! surface friction velocity [m s-1] | ||
| real(cvmix_r8), intent(in) :: Bsfc_ns ! non-solar surface buoyancy flux boundary condition | ||
|
|
||
| type(cvmix_kpp_params_type), optional, target, intent(in) :: CVmix_kpp_params_user | ||
|
|
||
| ! !OUTPUT PARAMETERS: | ||
| real(cvmix_r8), intent(out) :: ERdepth ! ER Boundary Layer Depth [m] | ||
|
|
||
| !EOP | ||
| !BOC | ||
|
|
||
| ! Local variables | ||
| integer :: iz, nlev , kbl , kinv | ||
| real(cvmix_r8), dimension(size(OBL_depth)+1) :: zdepth, BEdE ! surface then cell-centers<0 | ||
| real(cvmix_r8), dimension(size(z_inter)+1) :: sigma, Bflux ! interface values | ||
| real(cvmix_r8) :: ws_i, Cemp_Rs, Gsig_i, Fdelrho, Bnonlocal, sigE, maxNsq, BEnt | ||
| real(kind=cvmix_r8), dimension(4) :: coeffs | ||
| type(cvmix_kpp_params_type), pointer :: CVmix_kpp_params_in | ||
|
|
||
| CVmix_kpp_params_in => CVmix_kpp_params_saved | ||
| if (present(CVmix_kpp_params_user)) then | ||
| CVmix_kpp_params_in => CVmix_kpp_params_user | ||
| end if | ||
|
|
||
| nlev = size(OBL_depth) | ||
| Cemp_Rs = 4.7_cvmix_r8 | ||
| Fdelrho = cvmix_one | ||
| maxNsq = 0.0 | ||
| do kbl = 2, nlev+1 | ||
| if ( Nsq(kbl) > maxNsq ) then | ||
| kinv = kbl | ||
| maxNsq = Nsq(kbl) | ||
| endif | ||
| enddo | ||
|
|
||
| ! Set default output values (no solution) | ||
| ERdepth = -cvmix_one | ||
| ! Set surface values | ||
| zdepth(1) = cvmix_zero | ||
| BEdE(1) = cvmix_zero | ||
| sigma(:) = cvmix_zero | ||
| Bflux(1) = Bsfc_ns ! non-solar surface buoyancy boundary condition for all kbl | ||
| ! Set OBL_depth(1)=top cell center values | ||
| zdepth(2) = -OBL_depth(1) | ||
| BEdE(2) = cvmix_zero | ||
|
|
||
| do kbl = 2, nlev | ||
| zdepth(kbl+1)= -OBL_depth(kbl) | ||
| BEdE(kbl+1) = cvmix_zero | ||
|
|
||
| sigma(kbl+1) = cvmix_one | ||
| Bflux(kbl+1) = cvmix_zero | ||
| sigma(kbl+2) = -z_inter(kbl+1)/OBL_depth(kbl) ! > 1.0 | ||
| Bflux(kbl+2) = cvmix_zero | ||
| Bnonlocal = 0.5_cvmix_r8 * Cemp_Rs * (abs(surfBuoy(kbl)) - surfBuoy(kbl)) | ||
|
|
||
| do iz = kbl,1,-1 | ||
| if (iz .gt. 1) then | ||
| sigma(iz) = -z_inter(iz)/OBL_depth(kbl) ! < 1.0 | ||
| call cvmix_kpp_compute_turbulent_scales(sigma(iz), OBL_depth(kbl), surfBuoy(kbl), uStar, StokesXI(kbl), & !0d | ||
| w_s=ws_i , CVmix_kpp_params_user=CVmix_kpp_params_user) | ||
| Gsig_i = cvmix_kpp_composite_shape(sigma(iz)) | ||
| Bflux(iz) = Gsig_i * (OBL_depth(kbl) * ws_i * Nsq(iz) - Bnonlocal) | ||
| endif | ||
|
|
||
| ! find the peak | ||
| if ( (Bflux(iz+1) .gt. Bflux(iz+2)) .and. (Bflux(iz+1) .ge. Bflux(iz)) .and. & | ||
| (Bflux(iz+1) .gt. cvmix_zero) ) then | ||
| ! Find sigE (the root of the derivative of the quadratic polynomial | ||
| ! interpolating (sigma(i), Bflux(i)) for i in [iz, iz+1, iz+2]) | ||
| ! Also find BEnt (value of quadratic at sigE) | ||
| ! call cvmix_math_poly_interp(coeffs, sigma(iz:iz+2), Bflux(iz:iz+2)) | ||
| ! comment by Aakash: the above is the original line, | ||
| ! it gives me errors so I changed it to below call. not sure if it is correct | ||
| call cvmix_math_poly_interp(coeffs, CVMIX_MATH_INTERP_QUAD, & | ||
| sigma(iz:iz+1), Bflux(iz:iz+1), & | ||
| sigma(iz+2), Bflux(iz+2)) | ||
| ! coeffs(3) = 0 => sigma(iz), sigma(iz+1), and sigma(iz+2) are not unique values | ||
| ! so there interpolation returned a linear equation. In this case we select | ||
| ! (sigma(iz+1), Bflux(iz+1)) as the maximum. | ||
| if (coeffs(3) .eq. cvmix_zero) then | ||
| sigE = sigma(iz+1) | ||
| Bent = Bflux(iz+1) | ||
| else | ||
| sigE = -0.5_cvmix_r8 * (coeffs(2) / coeffs(3)) | ||
| Bent = cvmix_math_evaluate_cubic(coeffs, sigE) | ||
| endif | ||
| Fdelrho = cvmix_one | ||
| BEdE(kbl+1) = Fdelrho*BEnt*sigE*OBL_depth(kbl) | ||
| exit ! No exit leaves BEdE(kbl+1) = cvmix_zero | ||
| endif | ||
| enddo | ||
|
|
||
| if ( (BEdE(kbl+1) > BEdE_ER(kbl)) .and. (Bsfc_ns < cvmix_zero) ) then | ||
| call cvmix_math_poly_interp(coeffs, CVmix_kpp_params_in%interp_type, & | ||
| zdepth(kbl:kbl+1) , BEdE(kbl:kbl+1), & | ||
| zdepth(kbl-1) , BEdE(kbl-1) ) ! surface values if kbl=2; | ||
| coeffs(1) = coeffs(1) - BEdE_ER(kbl) | ||
| ERdepth = -cvmix_math_cubic_root_find(coeffs, 0.5_cvmix_r8 * & | ||
| (zdepth(kbl)+zdepth(kbl+1))) | ||
|
|
||
| exit | ||
| endif | ||
|
|
||
| enddo | ||
|
|
||
| !EOC | ||
|
|
||
| end subroutine cvmix_kpp_compute_ER_depth | ||
|
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Your merge of the latest master introduced a second copy of cvmix_kpp_compute_ER_depth(). Did you change this function in a previous commit? I'd suggest deleting the first instance of this function, in case there are differences in this second copy...
| call cvmix_math_poly_interp(coeffs, sigma(iz:iz+2), Bflux(iz:iz+2)) | ||
| ! call cvmix_math_poly_interp(coeffs, sigma(iz:iz+2), Bflux(iz:iz+2)) | ||
| ! comment by Aakash: the above is the original line, | ||
| ! it gives me errors so I changed it to below call. not sure if it is correct |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
What error did you get? These two calls to cvmix_math_poly_interp are not equivalent, and will change answers regardless of the value of ML_diffusivity:
call cvmix_math_poly_interp(coeffs, sigma(iz:iz+2), Bflux(iz:iz+2))fits a quadratic such that P(sigma(i)) = Bflux(i) for i = iz, iz+1, iz+2 (standard quadratic interpolation)
call cvmix_math_poly_interp(coeffs, CVMIX_MATH_INTERP_QUAD, &
sigma(iz:iz+1), Bflux(iz:iz+1), &
sigma(iz+2), Bflux(iz+2))fits a quadratic such that P(sigma(i)) = Bflux(i) for i = iz, iz+1, and P'(sigma(iz)) = (Bflux(iz) - Bflux(iz+2)) / (sigma(iz) - sigma(iz+2)). If we were okay with this interpolation change, you'd still need to change your arguments to
call cvmix_math_poly_interp(coeffs, CVMIX_MATH_INTERP_QUAD, &
sigma(iz+1:iz+2), Bflux(iz+1:iz+2), &
sigma(iz), Bflux(iz))And this would interpolate at iz+1 and iz+2 while having the derivative at iz+1 match the finite difference computed between iz and iz+1...
Anyway, if you could print out the three sigma values and three Bflux values that cause problems in your runs then I'll look into what's going wrong in the interpolation routine we want to use.
Adds option to activate shape function obtained from machine learning (genetic programming and least squares fitting).
The relevant flag is 'CVmix_kpp_params_in%ML_diffusivity', when set to True uses the mixing coefficients.
The mixing coefficients are obtained using equations similar to the ones in the GFDL's ePBL scheme.
The corresponding article preprint is: Sane et al. (2025) https://doi.org/10.31219/osf.io/uab7v_v2