Replication of results of the original EEGNet paper. We are focused on the SMR test replication specifically
In this project following steps were done for the replication process:
- fetches data: BCI Competition IV; Dataset 2a,
- pre-process fetched data,
- trains a classifier (CNN Model) to predict SMR actions,
- logs everything to
app.log.
python -m venv .eegnetenv
# Windows: .eegnetenv\Scripts\activate
# macOS/Linux: source .eegnetenv/bin/activate
pip install -e ".[ds,test,lint]"- Fetch data (cached into
data/raw/) from kaggle
python -m eegnet_repl.fetch --src kaggleAlternative (Non-functional):
python -m eegnet_repl.fetch --src moabb- Preprocess data (cached into
data/processed/)
python -m eegnet_repl.dataset --src kaggle- Train model & Report generation
python -m eegnet_repl.train --trainingType Within-Subject --epochs 500 --generateReport True- trainingType can be either
Within-SubjectorCross-Subject - a json report will be generated if the argument value
Trueis passed
All of the above CLI commands can also be executed via the GUI. On top of that the generated reports can be viewed via the GUI. The Temporal and Spacial filters can be analysed here as well. The GUI was made to be as intutive as possible.
Run UI
python -m eegnet_repl.ui- Unit test for functions in dataset.py
python -m pytest tests/test_dataset.py -v- Unit test for functions in model.py
python -m pytest tests/test_model.py -v


