Skip to content

kkt-ee/MEDCNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MEDCNN: Multiresolution Encoder-Decoder Convolutional Neural Network

PyPI Version PyPI Version TensorFlow Version TFDWT Version Keras Version CUDA Version NumPy Version MIT




Installation guide


Install TFDWT from PyPI (Option $1$)

pip install MEDCNN

Install TFDWT from Github (Option $2$)

Download the package

git clone https://github.com/kkt-ee/MEDCNN.git

Change directory to the downloaded MEDCNN

cd MEDCNN

Run the following command to install the TFDWT package

pip install .




Verify installation

import MEDCNN
MEDCNN.__version__




Dependency

pip install TFDWT==0.0.2

Important: Make sure TFDWT version 0.0.2 is installed. The newer version 0.0.3 is not compatible!!




Sample usage

  • Import MEDCNN 2D Gφψ without attention
from MEDCNN.models.G2DwithoutAttention import Gφψ, configs
  • Import the control Unet2D model for reference
from MEDCNN.models.ControlUnet2D import Unet2D, uconfigs
  • Import utils to compile and train model
from MEDCNN.utils.utils import elapsedtime, timestamp
from MEDCNN.utils.BoundaryAwareDiceLoss import BoundaryAwareDiceLoss
from MEDCNN.utils.Load2Ddata import load_ibsr_XY
from MEDCNN.utils.TTViterators import get_train_test_val_iterators
from MEDCNN.utils.dice import dice_coef
from MEDCNN.utils.compile1 import compile_model
from MEDCNN.utils.Train1 import train
  • Example: Compile a MEDCNN
CONFIGKEY= 'minimal2'
model, segconfig = Gφψ(config=configs[CONFIGKEY], compile=False), 'nonResidual'
model, lossname = compile_model(model, dataset, dice_coef)
  • Example: Compile a control Unet2D
CONFIGKEY = '45678',
model, segconfig = Unet2D(config=uconfigs['45678'], compile=False), 'nonResidual'
model, lossname = compile_model(model, dataset, dice_coef)
  • Example: Train a model with X an Y of shape (7056, 256, 256, 1), (7056, 256, 256, 1)
train_iterator, test_iterator, val_iterator = get_train_test_val_iterators(X,Y) #Assuming X and Y is loaded by a dataloader
train(
 model, 
 train_iterator, test_iterator, val_iterator, 
 dataset='IBSR', 
 segconfig=segconfig, 
 lossname='bce', 
 CONFIGKEY=CONFIGKEY, 
 epochs=40)





Uninstall MEDCNN

pip uninstall MEDCNN







MEDCNN (C) 2025 Kishore Kumar Tarafdar, भारत 🇮🇳

About

Multiresolution Encoder-Decoder Convolutional Neural Network (MEDCNN) without attentions

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published