Skip to content
View neurondb's full-sized avatar
  • www.neurondb.ai

Block or report neurondb

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
neurondb/README.md

NeuronDB — PostgreSQL AI ecosystem

NeuronDB

PostgreSQL 16/17/18 CI: NeuronDB CI: NeuronMCP CI: Integration Security scan Docker

GPU Backends License: Proprietary Docs

Vector search, embeddings, and ML primitives in PostgreSQL, with optional services for agents, MCP, and a desktop UI.

Tip

New here? Start with Docs/getting-started/simple-start.md or jump to QUICKSTART.md.

Hello NeuronDB (60 seconds)

Get vector search working in under a minute:

# 1. Start PostgreSQL with NeuronDB
docker compose up -d neurondb

# 2. Connect and create extension
psql "postgresql://neurondb:neurondb@localhost:5433/neurondb" -c "CREATE EXTENSION IF NOT EXISTS neurondb;"

# 3. Create table, insert vectors, create index, and search
psql "postgresql://neurondb:neurondb@localhost:5433/neurondb" <<EOF
CREATE TABLE documents (
  id SERIAL PRIMARY KEY,
  content TEXT,
  embedding vector(384)
);

INSERT INTO documents (content, embedding) VALUES
  ('Machine learning algorithms', '[0.1,0.2,0.3]'::vector),
  ('Neural networks and deep learning', '[0.2,0.3,0.4]'::vector),
  ('Natural language processing', '[0.3,0.4,0.5]'::vector);

CREATE INDEX ON documents USING hnsw (embedding vector_cosine_ops);

SELECT id, content, embedding <=> '[0.15,0.25,0.35]'::vector AS distance
FROM documents
ORDER BY embedding <=> '[0.15,0.25,0.35]'::vector
LIMIT 3;
EOF

[!SECURITY] The default password (neurondb) is for development only. Always change it in production by setting POSTGRES_PASSWORD in your .env file. See Service URLs & ports for connection details.

Table of contents

What you can build

  • Semantic & hybrid search: vector similarity + SQL filters + full-text search
  • RAG pipelines: store, retrieve, and serve context with Postgres-native primitives
  • Agent backends: durable memory and tool execution backed by PostgreSQL
  • MCP integrations: MCP clients connecting to NeuronDB via tools/resources

What's different

Feature NeuronDB Alternatives
Index types HNSW, IVF, PQ, hybrid, multi-vector Limited (e.g., pgvector: HNSW/IVFFlat only)
GPU acceleration CUDA, ROCm, Metal (3 backends) Single backend or CPU-only
Benchmark coverage RAGAS, MTEB, BEIR integrated Manual setup required
Agent runtime NeuronAgent included (REST API, workflows) External services needed
MCP server NeuronMCP included (100+ tools) Separate integration required
Desktop UI NeuronDesktop included Build your own
ML algorithms 52+ algorithms (classification, regression, clustering) Extension only (limited)
SQL functions 473+ functions Typically <100

Architecture

flowchart LR
  subgraph DB["NeuronDB PostgreSQL"]
    EXT["NeuronDB extension"]
  end
  AG["NeuronAgent"] -->|SQL| DB
  MCP["NeuronMCP"] -->|tools/resources| DB
  UI["NeuronDesktop UI"] --> API["NeuronDesktop API"]
  API -->|SQL| DB
Loading

Note

The root docker-compose.yml starts the ecosystem services together. You can also run each component independently (see component READMEs).

Installation

Pick one component

Choose what you need:

Component Setup Command What you get
NeuronDB only (extension) docker compose up -d neurondb Vector search, ML algorithms, embeddings in PostgreSQL
NeuronDB + NeuronMCP docker compose up -d neurondb neuronmcp Above + MCP server for Claude Desktop, etc.
NeuronDB + NeuronAgent docker compose up -d neurondb neuronagent Above + Agent runtime with REST API
Full stack docker compose up -d All components including NeuronDesktop UI

Note

All components run independently. The root docker-compose.yml starts everything together for convenience, but you can run individual services as needed.

Quick start (Docker)

Option 1: Use published images (recommended)

Pull pre-built images from GitHub Container Registry:

# Pull latest images
docker compose pull

# Start services
docker compose up -d
./scripts/health-check.sh

Tip

For specific versions, see Container Images documentation. Published images are available starting with v1.0.0.

Option 2: Build from source

docker compose up -d --build
./scripts/health-check.sh
Prerequisites checklist
  • Docker 20.10+ installed
  • Docker Compose 2.0+ installed
  • 4 GB+ RAM available
  • Ports 5433, 8080, 8081, 3000 available

Important

Prefer a step-by-step guide? See QUICKSTART.md.

[!SECURITY] Default credentials are for development only. In production, set strong passwords via environment variables or .env file.

Native install

Install the NeuronDB extension directly into your existing PostgreSQL installation.

Build and install steps

Prerequisites:

  • PostgreSQL 16, 17, or 18 development headers
  • C compiler (gcc or clang)
  • Make

Build:

cd NeuronDB
make
sudo make install

Enable extension:

CREATE EXTENSION neurondb;

Configure (if needed):

Some features require preloading. Add to postgresql.conf:

shared_preload_libraries = 'neurondb'

Then restart PostgreSQL:

sudo systemctl restart postgresql

Configuration parameters (GUCs):

# Vector index settings
neurondb.hnsw_ef_search = 40          # HNSW search quality
neurondb.enable_seqscan = on          # Allow sequential scans

# Memory settings
neurondb.maintenance_work_mem = 256MB # Index build memory

Upgrade path:

-- Check current version
SELECT extversion FROM pg_extension WHERE extname = 'neurondb';

-- Upgrade to latest
ALTER EXTENSION neurondb UPDATE;

For detailed installation instructions, see NeuronDB/INSTALL.md.

Minimal mode (extension only)

Use NeuronDB as a PostgreSQL extension only, without the Agent, MCP, or Desktop services.

Benefits:

  • ✅ No extra services or ports
  • ✅ Minimal resource footprint
  • ✅ Full vector search, ML algorithms, and embeddings
  • ✅ Works with any PostgreSQL client

Installation:

Follow the Native install steps above. That's it! You now have vector search and ML capabilities in PostgreSQL.

Usage:

-- Create a table with vectors
CREATE TABLE documents (
  id SERIAL PRIMARY KEY,
  content TEXT,
  embedding VECTOR(1536)
);

-- Create HNSW index
CREATE INDEX ON documents USING hnsw (embedding vector_cosine_ops);

-- Vector similarity search
SELECT id, content
FROM documents
ORDER BY embedding <=> '[0.1, 0.2, ...]'::vector
LIMIT 10;

No additional services, ports, or configuration required!

Service URLs & ports

Service How to reach it Default credentials
NeuronDB (PostgreSQL) postgresql://neurondb:neurondb@localhost:5433/neurondb User: neurondb, Password: neurondb ⚠️ Dev only
NeuronAgent http://localhost:8080/health API key required for endpoints
NeuronDesktop UI http://localhost:3000 No auth (development)
NeuronDesktop API http://localhost:8081/health No auth (development)

Warning

Production Security: The default credentials shown above are for development only. Always use strong, unique passwords in production. Set POSTGRES_PASSWORD and other secrets via environment variables or a .env file (see env.example).

Documentation

Module-wise Documentation

NeuronDB documentation
NeuronAgent documentation
NeuronMCP documentation
NeuronDesktop documentation

Repo layout

Component Path What it is
NeuronDB NeuronDB/ PostgreSQL extension with vector search, ML algorithms, GPU acceleration (CUDA/ROCm/Metal), embeddings, RAG pipeline, hybrid search, and background workers
NeuronAgent NeuronAgent/ Agent runtime + REST/WebSocket API (Go) with multi-agent collaboration, workflow engine, HITL, tools, memory, budget management, and evaluation framework
NeuronMCP NeuronMCP/ MCP server for MCP-compatible clients (Go) with tools and resources
NeuronDesktop NeuronDesktop/ Web UI + API for the ecosystem providing a unified interface

Component READMEs

Examples

Benchmarks

NeuronDB includes a benchmark suite to evaluate vector search, hybrid search, and RAG performance.

Quick start

Run all benchmarks:

cd NeuronDB/benchmark
./run_bm.sh

This validates connectivity and runs the vector/hybrid/RAG benchmark groups.

Benchmark suite

Benchmark Purpose Datasets Metrics
Vector Vector similarity search performance SIFT-128, GIST-960, GloVe-100 QPS, Recall, Latency (avg, p50, p95, p99)
Hybrid Combined vector + full-text search BEIR (nfcorpus, msmarco, etc.) NDCG, MAP, Recall, Precision
RAG End-to-end RAG pipeline quality MTEB, BEIR, RAGAS Faithfulness, Relevancy, Context Precision

Reproducible benchmarks

To reproduce benchmark results:

# Use exact Docker image tags (see releases)
docker pull ghcr.io/neurondb/neurondb-postgres:v1.0.0-pg17-cpu

# Run with documented hardware profile
cd NeuronDB/benchmark
./run_bm.sh --hardware-profile "cpu-8core-16gb"

# Individual benchmark with exact parameters
cd NeuronDB/benchmark/vector
./run_bm.py --prepare --load --run \
  --datasets sift-128-euclidean \
  --max-queries 1000 \
  --index hnsw \
  --ef-search 40
Benchmark Results & Hardware Specs

Test Environment:

  • CPU: 13th Gen Intel(R) Core(TM) i5-13400F (16 cores)
  • RAM: 31.1 GB
  • GPU: NVIDIA GeForce RTX 5060, 8151 MiB
  • PostgreSQL: 18.1

Vector Search Benchmarks:

Metric Value
Dataset sift-128-euclidean
Dimensions 128
Training Vectors 1,000,000
Test Queries 10,000
Index Type HNSW
Recall@10 1.000
QPS 1.90
Avg Latency 525.62 ms
p50 Latency 524.68 ms
p95 Latency 546.62 ms
p99 Latency 555.52 ms

Hybrid Search Benchmarks:

Status: Not run (see NeuronDB/benchmark/README.md for details)

RAG Pipeline Benchmarks:

Status: Completed (verification passed)

[!NOTE] For detailed benchmark results, reproducible configurations, and additional datasets, see NeuronDB/benchmark/README.md.

Run individual benchmarks
# Vector benchmark
cd NeuronDB/benchmark/vector
./run_bm.py --prepare --load --run --datasets sift-128-euclidean --max-queries 100

# Hybrid benchmark
cd NeuronDB/benchmark/hybrid
./run_bm.py --prepare --load --run --datasets nfcorpus --model all-MiniLM-L6-v2

# RAG benchmark
cd NeuronDB/benchmark/rag
./run_bm.py --prepare --verify --run --benchmarks mteb

GPU profiles (CUDA / ROCm / Metal)

The root docker-compose.yml supports profiles:

  • CPU (default): docker compose up -d
  • CUDA: docker compose --profile cuda up -d
  • ROCm: docker compose --profile rocm up -d

Ports differ per profile (see env.example):

  • CPU: POSTGRES_PORT=5433
  • CUDA: POSTGRES_CUDA_PORT=5434
  • ROCm: POSTGRES_ROCM_PORT=5435
Common Docker commands
# Stop everything (keep data)
docker compose down

# Stop everything (delete data volumes)
docker compose down -v

# See status
docker compose ps

# Tail logs
docker compose logs -f neurondb neuronagent neuronmcp neurondesk-api neurondesk-frontend

Operations

Key operational considerations for production:

Contributing / security / license

Project statistics

Stats snapshot (may change)
  • 473 SQL functions in NeuronDB extension
  • 52+ ML algorithms supported
  • 100+ MCP tools available
  • 4 integrated components working together
  • 3 PostgreSQL versions supported (16, 17, 18)
  • 4 GPU platforms supported (CPU, CUDA, ROCm, Metal)
Platform & version coverage
Category Supported Versions
PostgreSQL 16, 17, 18
Go 1.21, 1.22, 1.23, 1.24
Node.js 18 LTS, 20 LTS, 22 LTS
Operating Systems Ubuntu 20.04, Ubuntu 22.04, macOS 13 (Ventura), macOS 14 (Sonoma)
Architectures linux/amd64, linux/arm64

Popular repositories Loading

  1. neurondb neurondb Public

    PostgreSQL extension for vector search, embeddings, and ML, plus NeuronAgent runtime and NeuronMCP server.

    C 27 1

  2. www www Public

    TypeScript