Skip to content

🧠 Stop building AI that forgets. Master MCP (Model Context Protocol) with production-ready semantic memory, hybrid RAG, and the WARNERCO Schematica teaching app. FastMCP + LangGraph + Vector/Graph stores. Your AI assistant's long-term memory starts here.

License

Notifications You must be signed in to change notification settings

timothywarner-org/context-engineering

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

47 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Context Engineering with MCP: Build AI Systems That Actually Remember

Context Engineering with MCP Course Cover

Welcome to the training hub for mastering Context Engineering with Model Context Protocol (MCP). This course teaches you to implement production-ready semantic memory systems for AI assistants using Python, FastAPI, FastMCP, and LangGraph.


Quick Start

Prerequisites

  • Python 3.11+ (3.12+ recommended for WARNERCO Schematica)
  • Node.js 20+ (for Lab 01 and MCP Inspector)
  • uv package manager (recommended for Python)
  • Claude Desktop or Claude Code

Option 1: Hello MCP Lab (Beginner Entry Point)

git clone https://github.com/timothywarner-org/context-engineering.git
cd context-engineering/labs/lab-01-hello-mcp/starter
npm install && npm start

# Test with MCP Inspector (in another terminal)
npx @modelcontextprotocol/inspector node src/index.js

Option 2: WARNERCO Schematica (Flagship Teaching App)

cd src/warnerco/backend
uv sync
uv run uvicorn app.main:app --reload    # HTTP server at http://localhost:8000
uv run warnerco-mcp                      # MCP stdio server for Claude Desktop

Course Structure (4 x 50 Minutes)

Segment Topic Focus
1 All About Context Token economics, context loss types, why RAG isn't enough
2 All About MCP FastMCP, FastAPI, tools, resources, prompts, elicitations
3 Semantic Memory Stores JSON, ChromaDB, Azure AI Search, Graph Memory, Scratchpad
4 MCP in Production Claude Desktop, Claude Code, VS Code, GitHub Copilot, LangGraph

WARNERCO Schematica Architecture

The flagship teaching application demonstrates production MCP patterns with a 7-node hybrid RAG pipeline:

+---------------------------------------------------------------+
|                     FastAPI + FastMCP                         |
+---------------------------------------------------------------+
|  LangGraph Flow (7-node Hybrid RAG)                           |
|  parse_intent -> query_graph -> inject_scratchpad -> retrieve |
|  -> compress -> reason -> respond                             |
+---------------------------------------------------------------+
|  Hybrid Memory Layer                                          |
|  +-------------------+  +-------------------+  +-------------+ |
|  | Vector Store      |  | Graph Store       |  | Scratchpad  | |
|  | JSON -> Chroma -> |  | SQLite + NetworkX |  | In-memory   | |
|  | Azure AI Search   |  | (Knowledge Graph) |  | (Session)   | |
|  +-------------------+  +-------------------+  +-------------+ |
+---------------------------------------------------------------+

Memory Store Comparison

Feature JSON ChromaDB Azure AI Search Graph Scratchpad
Semantic Search No Yes Yes No No
Relationship Queries No No No Yes No
Session Memory No No No No Yes
Best For Prototyping Local dev Production Connections Working memory

Repository Structure

context-engineering/
β”œβ”€β”€ src/warnerco/backend/      # WARNERCO Schematica (FastAPI + FastMCP + LangGraph)
β”œβ”€β”€ labs/lab-01-hello-mcp/     # Hands-on beginner lab
β”œβ”€β”€ docs/                      # Student materials, tutorials, diagrams
β”œβ”€β”€ instructor/                # Instructor-only materials
β”œβ”€β”€ config/                    # Sample MCP client configurations
β”œβ”€β”€ .vscode/                   # VS Code workspace configuration
β”œβ”€β”€ .claude/                   # Claude Code agents and skills
└── CLAUDE.md                  # Development instructions (SOURCE OF TRUTH)

For development details, see CLAUDE.md - the source of truth for:

  • Complete MCP tool reference
  • API endpoint documentation
  • Environment variable configuration
  • LangGraph pipeline details
  • Graph and Scratchpad Memory features

MCP Client Configuration

Claude Desktop

Windows: %APPDATA%\Claude\claude_desktop_config.json Mac: ~/Library/Application Support/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "warnerco": {
      "command": "uv",
      "args": ["run", "warnerco-mcp"],
      "cwd": "C:/github/context-engineering/src/warnerco/backend"
    }
  }
}

VS Code

See .vscode/mcp.json in the repository for local and Azure APIM configurations.


Testing with MCP Inspector

npx @modelcontextprotocol/inspector uv run warnerco-mcp
# Opens http://localhost:5173

Resources


Your Instructor

Tim Warner

Microsoft MVP - Azure AI and Cloud/Datacenter Management Microsoft Certified Trainer (25+ years)


License

MIT License - 2026 Timothy Warner


Now go build AI systems that actually remember!

About

🧠 Stop building AI that forgets. Master MCP (Model Context Protocol) with production-ready semantic memory, hybrid RAG, and the WARNERCO Schematica teaching app. FastMCP + LangGraph + Vector/Graph stores. Your AI assistant's long-term memory starts here.

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks